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Chemical space is vast. The number of synthetically accessible 
organic molecules alone exceeds 1060 (ref. 1). Humans have 
explored only infinitesimal regions of this vast space over the 

course of recorded history2, yet this exploration has yielded an arse-
nal of molecules that form the basis for much of medical practice. 
These successes, against overwhelming odds, lead to optimism that 
more efficient ways of navigating chemical space could help address 
many of the most pressing challenges facing humanity.

Historically, many approaches to chemical space exploration 
aimed to enumerate the set of molecules comprising an explic-
itly defined space2–8. More recently, deep generative models have 
emerged as a powerful tool for chemical space exploration9. These 
models leverage deep neural networks to learn the chemistries 
implicitly embedded within a set of training molecules. Once 
trained, these models are capable of stochastically sampling unseen 
molecules from the target chemical space.

Many of the most successful approaches to generative modelling 
learn to generate textual representations of molecules, commonly 
in the simplified molecular-input line-entry system (SMILES) for-
mat10 (Fig. 1a). This strategy allows practitioners to borrow archi-
tectures from the field of natural language processing known as 
recurrent neural networks (RNNs; Fig. 1b)11–18. Although alterna-
tive approaches have been proposed, such as learning to generate 
graphs19,20 or to assemble molecules from substructures21, system-
atic benchmarks have not shown these to outperform RNN-based 
models of SMILES strings22,23, which we refer to here as chemical 
language models (CLMs).

CLMs have attracted interest for their potential to generate 
molecules with arbitrary physicochemical or biological properties 
on demand, and thereby solve what has been termed the ‘inverse 
design’ problem24. A major outstanding challenge, however, is that 

these models are typically seen to require large amounts of train-
ing data—on the order of hundreds of thousands to millions of 
molecules9. It is often the case that the chemical space targeted 
for exploration is not populated by a commensurate number of 
examples. For example, generative models could be used to sug-
gest plausible structures for unidentified molecules in untargeted 
metabolomics, but for many species or taxa, only a few thousand 
metabolites are known. To enable generative modelling in low-data 
regimes, methods based on reinforcement learning (RL)13,17,25–27 or 
transfer learning (TL)12,15,16,28–31 have been developed. In both para-
digms, models are first ‘pre-trained’ on a large and generic database 
of chemical structures, and thereafter undergo a second round of 
‘fine-tuning’ meant to guide them into a more restricted chemi-
cal space. However, several shortcomings of these approaches 
have been noted. Both approaches may suffer from mode col-
lapse or catastrophic forgetting26. In RL-based approaches, the 
more powerful generative model may learn to exploit unforeseen 
deficiencies in the reward function, leading to the generation of 
unrealistically simple but high-scoring molecules13,32. Finally, both 
strategies yield results that vary depending on the duration of the 
fine-tuning step, and there is no obvious a priori basis to infer an 
optimal duration28.

Ideally, it would be possible to directly learn a generative model 
from a small number of examples. At present, however, it is unclear 
what the lower bound might be on the number of molecules 
needed to learn a robust model. Moreover, despite some pioneer-
ing efforts16,33, it remains unclear whether specific strategies could 
optimize generative models for the low-data regime. Such strategies 
might include varying the textual representation of the input mol-
ecules, the architecture or hyperparameters of the CLM, the process 
by which the CLM is trained or strategies for data augmentation.
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Deep generative models are powerful tools for the exploration of chemical space, enabling the on-demand generation of mol-
ecules with desired physical, chemical or biological properties. However, these models are typically thought to require training 
datasets comprising hundreds of thousands, or even millions, of molecules. This perception limits the application of deep gen-
erative models in regions of chemical space populated by a relatively small number of examples. Here, we systematically evalu-
ate and optimize generative models of molecules based on recurrent neural networks in low-data settings. We find that robust 
models can be learned from far fewer examples than has been widely assumed. We identify strategies that further reduce the 
number of molecules required to learn a model of equivalent quality, notably including data augmentation by non-canonical 
SMILES enumeration, and demonstrate the application of these principles by learning models of bacterial, plant and fungal 
metabolomes. The structure of our experiments also allows us to benchmark the metrics used to evaluate generative models 
themselves. We find that many of the most widely used metrics in the field fail to capture model quality, but we identify a sub-
set of well-behaved metrics that provide a sound basis for model development. Collectively, our work provides a foundation for 
directly learning generative models in sparsely populated regions of chemical space.
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Here, we systematically evaluate the ability of CLMs to learn 
from limited training data. We find that robust models can be 
learned from surprisingly few examples. We then identify strat-
egies that reduce the amount of training data required to learn a 
model of equivalent quality. Conversely, our systematic benchmarks 
indicate that several of the strategies that have been proposed in 
the literature for this purpose are ineffective. We demonstrate the 

application of the principles that emerge from our analysis by train-
ing CLMs of bacterial, plant and fungal metabolites, which learn to 
reproduce highly complex chemical spaces from only thousands of 
input molecules.

A secondary outcome of our work is that the structure of our 
experiments provides an opportunity to compare the metrics 
that are currently used to evaluate generative models themselves. 
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Fig. 1 | Learning generative models of molecules from limited training examples. a, Molecular structures and canonical SMILES representations of 
two exemplary molecules, aspirin (top) and caffeine (bottom). b, Architecture of a three-layer RNN trained to generate SMILES strings. c, Overview 
of the experimental design. d, Proportion of valid SMILES generated by CLMs trained on one of varying numbers of molecules sampled from the ZINC 
database. The means and standard deviations of 10 independent replicates are shown. e, Spearman correlations between training dataset size (number 
of molecules) and each of 23 proposed metrics for the evaluation of CLMs trained on the ZINC database. The shaded area highlights metrics with a rank 
correlation of ≥0.8 to the training dataset size. NP, natural product-likeness; SA, synthetic accessibility; TC, topological complexity; QED, quantitative 
estimate of drug-likeness; MWs, molecular weights; TPSA, topological polar surface area. f, Matrix of Spearman correlations between the values of the 
five top-performing metrics across n = 110 CLMs. g, PCA of top-performing metrics for molecules generated by n = 110 CLMs trained on varying numbers 
of molecules sampled from ZINC, coloured by the size of the training dataset. h, PC1 scores for n = 110 CLMs trained on varying numbers of molecules 
sampled from ZINC. Inset text shows the Spearman correlation.
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Surprisingly, we find that many of these metrics fail to capture 
model quality. However, we identify five metrics that are robustly 
correlated with the size of the training dataset, and develop a frame-
work to integrate these into a holistic measure of performance.

Results
We initially set out to determine the minimum number of mole-
cules required to train a robust CLM. To this end, we trained models 
on random samples of between 1,000 and 500,000 SMILES strings 
from the ZINC database of commercially available compounds34, 
then sampled 500,000 SMILES from each trained model (Fig. 1c). 
We repeated this process 10 times for each sample size.

As an initial assessment, we calculated the proportion of valid 
SMILES generated by each model, a metric that has been widely 
used to evaluate generative models of molecules. The proportion 
of valid molecules increased rapidly as the size of the training data-
set increased, from only 6.7% with 1,000 molecules to 69.1% with 
25,000 molecules (Fig. 1d). On the other hand, performance satu-
rated rapidly after ~50,000 molecules.

Widely used metrics fail to capture generative model perfor-
mance. This observation suggested that CLMs can be learned from 
surprisingly small training datasets. However, the proportion of 
valid SMILES captures only one aspect of model performance. It is 
possible that a model has learned to generate valid SMILES strings, 
but that the resulting molecules bear little resemblance to those in 
the training set. We therefore sought to achieve a more holistic eval-
uation of model performance.

We calculated a suite of 23 different metrics that have previously 
been proposed to evaluate generative models of molecules16,22,23,33,35–37 
(Methods and Extended Data Fig. 1a). In the absence of a ‘ground 
truth’, it has been unclear which of these metrics best capture the 
quality of the underlying model. We reasoned that the structure of 
our experiment could be used to ascertain the most useful metrics. 
Specifically, we reasoned that, as the size of the training set increases, 
so too should measures of model performance. To formalize this 
notion, we calculated the Spearman rank correlation between the 
size of the training dataset and the value of each metric. We then 
compared the 23 metrics based on this correlation.

Surprisingly, we observed enormous variation in the perfor-
mance of the 23 metrics (Fig. 1e). A handful were strongly corre-
lated to the size of the training dataset, including the proportion 
of valid molecules, the Fréchet ChemNet distance (FCD)36 and the 
Murcko scaffolds of the generated molecules (Extended Data Fig. 
1b). However, the majority were at best moderately correlated to 
this experimental ‘ground truth’, and a subset exhibited no statisti-
cally significant correlation at all (Extended Data Fig. 1c,d). Among 
these were two of the most widely used metrics in the field: the pro-
portion of unique molecules and the computed octanol-water parti-
tion coefficient (log P) of generated molecules. Notably, all models 
generated unique molecules at a rate exceeding 99%, suggesting that 

generating diverse molecules is sufficiently easy for CLMs that this 
metric does not provide a useful benchmark.

Holistic evaluation of generative models of molecules. We 
sought to integrate information from several top-performing met-
rics to arrive at a single measure of model performance. However, 
these metrics are measured on very different scales and exhibit a 
complex correlation structure (Fig. 1f), precluding a simple aver-
aging procedure. We reasoned that, in the context of this experi-
ment, the size of the training dataset would represent the primary 
source of variation in the values of these metrics. Consequently, 
we hypothesized that in a principal component analysis (PCA), 
models would segregate along the first principal component 
(PC1) according to the size of the training dataset. This hypoth-
esis was borne out by a PCA of the 110 models trained on samples 
from the ZINC database (Fig. 1g,h). Notably, integrating infor-
mation from multiple metrics revealed that model performance 
continued to improve above the plateau suggested by the propor-
tion of valid molecules. This observation suggests that, as the size 
of the training set increases, CLMs first learn to produce valid 
SMILES and only later learn to match the structural and physico-
chemical properties of the target molecules. Consequently, inte-
grating multiple distinct sources of information is necessary for a 
holistic evaluation.

Learning CLMs of distinct chemical spaces. We next asked whether 
the number of molecules required to train a robust CLM would vary 
as a function of the target chemical space. To test this hypothesis, 
we repeated our initial experiment, but with molecules sampled 
from three different databases (Fig. 2a)7,38,39. These databases have 
distinct structural properties, with molecules from COCONUT 
generally being the most complex, followed by ChEMBL, ZINC and  
GDB (Fig. 2b).

A comparison of the proportion of valid molecules suggested 
that the minimum number of examples required to learn a robust 
model depends on the complexity of the target chemical space  
(Fig. 2c). Models trained on small organic compounds from GDB, 
for example, always produced a higher proportion of valid SMILES 
strings than models trained on an equivalent number of molecules 
from ZINC. By contrast, models of the COCONUT database never 
produced valid SMILES at a rate exceeding 82%.

We next asked whether the 23 metrics exhibited the same rela-
tionship to model performance as observed in ZINC. We confirmed 
that the majority of proposed metrics were weakly or inconsistently 
correlated to the experimental ground truth (Fig. 2d and Extended 
Data Fig. 2). Importantly, however, we found that the same five met-
rics achieved a rank correlation of ≥0.8 in all four databases.

In a combined PCA of all four databases, models separated 
along PC1 based on the size of the training dataset (Fig. 2d–f and 
Extended Data Fig. 2d,e). We obtained similar results when perform-
ing PCA within each database separately (Extended Data Fig. 3a)  

Fig. 2 | Low-data generative models of distinct chemical spaces. a, Overview of the experimental design. b, Structural and physicochemical properties 
of molecules from the four chemical databases analysed in this study. Top left: number of rings per molecule. Top right: molecular weight spectrum of 
molecules from each database. Centre left: octanol–water partition coefficients (log P)66. Centre right: Bertz topological complexities65 of each molecule. 
Bottom left: quantitative estimate of drug-likeness (QED) scores69. Bottom right: natural product (NP)-likeness scores68. c, Proportion of valid SMILES 
generated by CLMs trained on one of varying numbers of molecules sampled from one of four chemical databases. The means and standard deviations of 
10 independent replicates are shown. d, Spearman correlations between training dataset size (number of molecules) and each of 23 proposed metrics for 
the evaluation of chemical generative models in four chemical databases. Inset numbers show the mean Spearman correlation. The shaded area highlights 
metrics with a rank correlation of ≥ 0.8 to the training dataset size. e, PCA of top-performing metrics for molecules generated by n = 440 CLMs, trained 
on molecules sampled from four different databases, coloured by the size of the training dataset. f, As in e, but coloured by the chemical database on 
which the generative models were trained. g, PC1 scores for CLMs trained on varying numbers of molecules sampled from one of four chemical databases. 
The means and standard deviations of 10 independent replicates are shown. h, Mean difference in PC1 scores (∆PC1 = PC1GDB − PC1ChEMBL) between CLMs 
trained on varying numbers of molecules sampled from GDB (x axis) or ChEMBL (y axis). Black-outlined squares indicate pairs without statistically 
significant differences (uncorrected p > 0.05, two-sided t-test).
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or when withholding one database from the PCA and projecting 
the withheld models onto the coordinate basis of the other three 
databases (Extended Data Fig. 3b). These findings indicate that the 

loadings learned from a PCA of a diverse set of generative models 
can be applied to unseen models. Performance decreased linearly 
below 1,000 molecules, suggesting that RL- or TL-based strategies 
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may remain the only viable options for the smallest training datasets 
(Extended Data Fig. 4).

A direct comparison of data requirements across chemical 
spaces revealed unexpectedly large differences in ‘data hungriness’ 
(Extended Data Fig. 5). For example, a training dataset of 500,000 
molecules was required to learn a model of ChEMBL that was sta-
tistically indistinguishable from a model of the GDB learned from 
only 25,000 examples (Fig. 2h). This observation raises the possibil-
ity that results obtained from the GDB database may not be appli-
cable to models of more complex molecules14,40.

Finally, we asked how the diversity of the sampled molecules 
impacted model performance in the low-data regime. We trained 
CLMs on increasingly homogeneous samples from the GDB data-
base. Both individual metrics and PC1 scores indicated that perfor-
mance decreased as the diversity of the sampled molecules increased 
(Fig. 3). We observed similar trends in ChEMBL and ZINC 
(Extended Data Fig. 6). These findings suggest that efforts to learn 
CLMs from a small number of examples are substantially more likely 
to succeed in relatively homogeneous regions of chemical space.

Evaluating molecular representations for CLMs. To date, the 
SMILES format has been the most common textual representation 
used to train RNNs. However, models trained on SMILES strings 
often generate a large proportion of invalid molecules, which some 
have identified as a key limitation41–44. Two prominent alternatives 

to the SMILES format have been proposed. The DeepSMILES vari-
ant introduces two modifications to the SMILES syntax to remove 
long-term dependencies associated with the representation of rings 
and branches41. Self-referencing embedded strings (SELFIES) are an 
entirely different representation based on a Chomsky type-2 gram-
mar, in which every SELFIES string specifies a valid chemical graph42.

We trained generative models on SMILES, DeepSMILES and 
SELFIES representations of molecules from all four databases (Fig. 
4a). Inspection of the proportion of valid molecules confirmed that 
models trained on SELFIES strings did indeed produce valid chemi-
cal graphs at a rate of 100% (Fig. 4b and Extended Data Fig. 7a). 
Surprisingly, models trained on DeepSMILES did not produce valid 
molecules at a substantially higher rate than ones trained on canoni-
cal SMILES.

To investigate how well models trained on each representation 
learned to match the target chemical space, we again performed PCA 
(Extended Data Fig. 7b). Surprisingly, we found that models trained 
to generate SELFIES strings consistently achieved lower PC1 scores 
than models trained on SMILES or DeepSMILES representations of 
the same molecules (Fig. 4c and Extended Data Fig. 7c). Inspecting 
individual metrics corroborated this trend: for example, models 
trained on SELFIES also had a higher Fréchet ChemNet distance 
to the training set (Fig. 4d and Extended Data Fig. 7d). For some 
very small sample sizes (n ≤ 5,000), models trained on SELFIES or 
DeepSMILES did occasionally achieve higher PC1 scores (Fig. 4e),  
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sampled from the ZINC database after varying degrees of non-canonical SMILES enumeration. j, PC1 scores of CLMs trained on molecules sampled 
from the ZINC database after varying degrees of non-canonical SMILES enumeration. k, Mean difference in PC1 scores (∆PC1) between CLMs trained 
on non-canonical SMILES with varying degrees of data augmentation from one of four chemical databases, as compared to canonical SMILES. Asterisks 
indicate statistically significant differences (uncorrected p < 0.05, two-sided t-test). l, Mean difference in PC1 scores between CLMs trained on molecules 
from the ZINC database represented as canonical SMILES (x axis) or non-canonical SMILES after 10× augmentation (y axis). Black-outlined squares 
indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided t-test). m, As in l, but with an augmentation factor of 30×.
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but these differences were modest, marginally significant, and 
inconsistent across chemical spaces. The net result was that substan-
tially more DeepSMILES or SELFIES were required to learn a model 
of equivalent quality to one trained on SMILES strings (Fig. 4f,g and 
Extended Data Fig. 7e).

Although the tendency of generative models trained on SMILES 
strings to produce invalid outputs has been seen as a central  
limitation of these models, our results suggest that this may actu-
ally represent an unrecognized strength. After filtering out these 

invalid molecules, models trained on SMILES strings matched the 
target chemical space better than models trained on alternative 
representations.

Paradoxical effects of data augmentation on CLMs. By con-
vention, each chemical structure possesses a single, ‘canonical’ 
SMILES representation. However, hundreds of ‘non-canonical’ 
SMILES representations can also be enumerated by varying the 
order in which the atoms in the molecule are traversed45 (Fig. 4h). 
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Enumeration of non-canonical SMILES has been employed to 
learn continuous representations of chemical structures by training 
sequence-to-sequence models46,47, and emerging evidence suggests 
that SMILES enumeration can improve the quality of generative 
models16,33.

We tested whether SMILES enumeration could decrease the 
number of training examples needed to learn a CLM (Fig. 4h). 
Models trained on enumerated SMILES generated valid molecules 
at a dramatically higher rate, especially in the smallest training 
datasets (Fig. 4i and Extended Data Fig. 8a–c). The exception was 
for the most structurally complex databases, in which very high 
degrees of data augmentation sometimes appeared to degrade the 
quality of models learned from large training datasets (Extended 
Data Fig. 8b).

PCA underscored the context-specific effects of SMILES enu-
meration (Fig. 4j and Extended Data Fig. 8d,e). Data augmenta-
tion had by far the largest effect on models learned from very small 
training datasets. Conversely, in the largest training datasets, we 
occasionally observed a negative effect of SMILES enumeration 

(Fig. 4k). Together, these findings suggest that data augmentation is 
best reserved for the low-data regime, particularly when modelling 
structurally complex molecules.

To quantify the improvement in performance attributable to 
SMILES enumeration, we compared models trained on augmented 
datasets to non-augmented datasets of varying sizes (Fig. 4l,m). For 
very small training datasets, data augmentation by a factor of 10 
yielded a performance increase on par with quadrupling the num-
ber of unique molecules in the training set (Fig. 4l and Extended 
Data Fig. 8f). Augmentation by a factor of 30 had even more dra-
matic effects, allowing a model trained on only 5,000 molecules to 
match the PC1 scores of one trained on 50,000 canonical SMILES 
(Fig. 4m). However, this improvement in performance was attenu-
ated completely in datasets of 500,000 molecules.

Taken together, these analyses highlight the conflicting impacts 
of SMILES enumeration. When learning generative models from 
very small training datasets, data augmentation can dramatically 
improve performance. On the other hand, our experiments expose 
a potential for ‘over-enumeration’ in large datasets of structurally 
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complex molecules, whereby even low levels of data augmentation 
can negatively impact performance.

Data, not architecture, dictates model performance in the 
low-data regime. Our experiments to this point have focused on 
varying the data provided as input to a CLM. We next asked whether 
we could optimize the model itself for the low-data regime. To test 
this possibility, we systematically varied each of six model hyper-
parameters, training a total of 1,210 models on molecules from the 
ZINC database (Fig. 5a). These models segregated along PC1 based 
on the size of the training dataset (Fig. 5b), suggesting that the impact 
of hyperparameter tuning was small in comparison to the size of the 
training dataset. To formally quantify this notion, we assessed the 
impact of each hyperparameter in turn on PC1 (Fig. 5c). For param-
eters controlling the capacity of the neural network (hidden layer 
size, embedding layer size and the number of hidden layers), inter-
mediate values typically yielded the best performance. However, 
even for very small or very large models, the difference was small in 
comparison to the number of molecules in the training dataset (Fig. 
5d). The architecture of the RNN had a somewhat greater effect, 
with gated recurrent units (GRUs) and long short-term memory 
networks (LSTMs) achieving roughly identical performance, but 
‘vanilla’ RNNs performing substantially worse. Neither dropout nor 
batch size markedly affected model performance. We observed con-
cordant results in a second database (Extended Data Fig. 9).

Together, these findings emphasize the importance of the training 
dataset for CLMs. Across a large grid of hyperparameters, hyperpa-
rameter tuning almost never affected performance to a comparable 
degree as increasing the size of the training dataset (Fig. 5e).

Case study: learning generative models of bacterial, fungal and 
plant metabolomes. Our experiments elucidated principles for 

learning CLMs from limited training data. To exemplify these 
principles, we aimed to learn models of bacterial, fungal and plant 
metabolomes. Previous work has shown that manual enumeration 
of hypothetical metabolites can enable the discovery of novel mol-
ecules using mass spectrometry48,49. Generative models of metabo-
lomes could more efficiently traverse metabolite chemical space50, 
and thereby facilitate the identification of unknown metabolites.

We assembled databases of bacterial, fungal and plant metabo-
lites, but these each comprised only 15,000–22,000 molecules (Fig. 
6a). These databases are thus far smaller than those typically used 
to train models of much less complex molecules. With this chal-
lenge in mind, we asked whether applying the principles we had 
elucidated for low-data generative models could allow us to directly 
model these metabolomes. We selected an LSTM with a high 
degree of SMILES enumeration as the optimal strategy (Fig. 6b and 
Extended Data Fig. 10). Despite the limited amount of training data, 
the optimized models generated molecules whose physicochemi-
cal properties closely matched those of the target metabolomes 
(Supplementary Fig. 1). Moreover, visualizing the chemical space 
occupied by real and generated metabolites in two dimensions 
revealed that the generative models almost perfectly reproduced the 
chemical space of the three target metabolomes (Fig. 6c).

Taken together, these experiments demonstrate that CLMs can 
directly learn to reproduce even very complex chemical spaces from 
a small number of training examples. The hypothetical metabo-
lites generated by these models may number among the ‘dark mat-
ter’ of observed but unidentified metabolites in high-throughput 
metabolomics51.

Discussion
CLMs have emerged as powerful tools for chemical space explora-
tion. However, these models are widely perceived to require very 
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large training datasets. In this Article, we set out to quantify the 
minimum number of molecules required to learn a robust CLM 
and identify strategies to reduce this lower bound. To achieve these 
goals, we devised a series of systematic benchmarks. In total, we 
trained almost 8,500 CLMs and evaluated more than four billion 
generated molecules. The scale of this effort allowed us to compre-
hensively survey strategies for training and evaluating CLMs in the 
low-data regime.

We found that robust models can be learned from far less data 
than has previously been appreciated. However, performance was 
contingent on the target chemical space, with a larger number of 
training examples needed to learn models of structurally complex 
molecules. We evaluated two alternatives to the SMILES format, 
DeepSMILES and SELFIES, that have been proposed specifically 
for CLMs. Surprisingly, we found that while models trained on 
SELFIES strings produced valid molecules at a near-perfect rate, 
these molecules failed to match the target chemical space as well 
as those generated by a model trained on SMILES. The most suc-
cessful strategy we identified to improve generative modelling in 
the low-data regime involved enumerating multiple non-canonical 
SMILES for each molecule in the training set. Notably, in contrast 
to interventions that affected the input data, modifying the architec-
ture, hyperparameters or training strategy of the generative mod-
els had little effect on performance. This observation suggests that 
developing new strategies for molecular representation and data 
augmentation is likely to present a more fruitful direction for future 
research than altering the structure of the neural network itself.

Our experiments also allowed us to benchmark the metrics 
themselves that are used to evaluate generative models. That there is 
little agreement within the field on how generative models of mol-
ecules ought to be evaluated has been noted by several commenta-
tors32,52,53. The lack of an ‘even playing field’ for model evaluation 
hinders comparisons of published models, making it difficult to 
discern which strategies have been successful and which have not. 
We found that many widely used metrics were at best weakly cor-
related to our experimental ground truth. We argue that this calls 
into question their use in model evaluation. However, we identi-
fied a subset of metrics that consistently exhibited strong correla-
tions to this ground truth. Importantly, our data do not allow us to 
exclude the possibility that the absence of a correlation may reflect 
shortcomings of the generative models themselves, rather than the 
metrics under investigation. However, the fact that we identified a 
number of strong and reproducible correlations to metrics such as 
the proportion of valid molecules or the Fréchet ChemNet distance 
supports the general notion that performance should improve as the 
size of the training dataset increases over several orders of magni-
tude. We developed a framework to integrate the top-performing 
metrics using PCA. To enable the integration of these metrics 
by PCA for newly developed models, we provide an R package, 
CLMeval, available at https://github.com/skinnider/CLMeval.

A limitation of our analysis is that we focused on a single fam-
ily of generative models: that is, RNN-based models of textual rep-
resentations. We were motivated to concentrate on this family of 
models because they have been arguably the most widely used in the 
field, and systematic benchmarks have found them to be among the 
best-performing models on various distribution-learning tasks22,23. 
Future efforts will be needed to understand the performance of 
other families of deep generative models, including other archi-
tectures adapted from natural language processing40,54,55, as well as 
graph generative models56–58, in the low-data regime.

Methods
Input data. Our experiments focused on learning generative models of molecules 
from four databases of chemical structures: the ZINC database of commercially 
available compounds34; the GDB-13 database, which enumerates all possible small 
organic molecules containing up to 13 atoms7; the ChEMBL database, which 

contains bioactive small molecules with drug-like properties38; and the COCONUT 
database of natural products39. Molecules from the ChEMBL database (version 
24.1) were obtained from http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/
releases/chembl_24_1/chembl_24_1_chemreps.txt.gz. Molecules from the 
COCONUT database were obtained from the Zenodo upload accompanying the 
original publication at http://zenodo.org/record/3778405/files/COCONUTapril.
zip. A random sample of one million molecules from the GDB-13 database14 was 
obtained from the Reymond group website at http://gdbtools.unibe.ch:8080/
cdn/gdb13.1M.freq.ll.smi.gz. A random sample of one million molecules was 
constructed from the ZINC database by first downloading each tranche separately 
from the ZINC website, then concatenating all 1,669 tranches into a single file and 
sampling from that file.

For each database, duplicate SMILES and SMILES that could not be parsed by 
the RDKit were removed. Salts or solvents were removed by splitting molecules 
into fragments and retaining only the heaviest fragment containing at least three 
heavy atoms, using code adapted from the Mol2vec package59. Charged molecules 
were neutralized using a list of neutralization reactions provided in the RDKit 
Cookbook. Molecules with atoms other than Br, C, Cl, F, H, I, N, O, P or S were 
removed, and molecules were converted to their canonical SMILES representations 
using the RDKit. Finally, SMILES strings were tokenized, and molecules containing 
extremely rare tokens (present in less than 0.01% of molecules in the database), 
as well as SMILES strings longer than 250 characters, were removed. Samples 
of between 1,000 and 500,000 SMILES were then drawn from the preprocessed 
databases. A total of 10 independent samples were drawn for each training dataset 
size. Variation in model performance across samples reflected both the molecules 
drawn from the chemical structure database and the initialization of the RNN 
parameters (Supplementary Fig. 2). SMILES strings were subsequently converted 
to DeepSMILES60 or SELFIES42 using versions 1.0.1 and 1.0.2 of the deepsmiles 
(http://github.com/baoilleach/deepsmiles) and selfies (http://github.com/
aspuru-guzik-group/selfies) packages, respectively. Enumeration of non-canonical 
SMILES was performed using the SmilesEnumerator class available from http://
github.com/EBjerrum/SMILES-enumeration, with augmentation factors of 3, 10 
or 30. All of the datasets used in this work are available from Zenodo at https://doi.
org/10.5281/zenodo.4641960.

We quantified the overlap between the four datasets and evaluated whether 
the presence of overlapping molecules between databases influenced our results. 
A substantial overlap was observed between the ChEMBL and COCONUT 
databases, but removing the overlapping molecules did not markedly affect model 
performance (Supplementary Fig. 3).

To evaluate the impact of the chemical diversity of the training molecules 
on model performance, we sampled training sets of between 1,000 and 10,000 
molecules with decreasing chemical diversity. These training sets were constructed 
by selecting a molecule at random from one of the GDB, ChEMBL and ZINC 
databases, and then computing Tc between the ‘founder’ molecule and the 
remainder of the database. The database was then filtered to retain only molecules 
with a Tc greater than some target minimum. A Tc of zero therefore reflects 
random selection of molecules across the entire database, whereas an increasing Tc 
reflects increasing similarity to the ‘founder’ molecule (that is, decreasing chemical 
diversity). The maximum Tanimoto coefficient was set as 0.15 for GDB and 0.2 
for ChEMBL and ZINC, as these were the highest thresholds at which we could 
reliably sample 10,000 neighbours for a randomly chosen molecule. The Tc was 
computed using extended connectivity fingerprint (ECFP) chemical fingerprints61 
with a diameter of six, which were selected due to their excellent performance in 
chemical similarity search62,63. The entire process was repeated 20 times, rather 
than 10 as done elsewhere in the manuscript, as we observed a greater degree 
of variability between samples, reflecting the influence of the randomly selected 
‘founder’ molecules on the target chemical space.

Chemical language models. RNNs were trained on samples of 1,000–500,000 
molecules from the four chemical structure databases, using code adapted from the 
REINVENT package (http://github.com/MarcusOlivecrona/REINVENT). SMILES 
were tokenized by considering individual characters as tokens, except atomic 
symbols with more than one character (Br, Cl) and environments within square 
brackets, such as [nH]. SELFIES were tokenized using the split_selfies function 
from the selfies package. The vocabulary of the RNN then consisted of all unique 
tokens detected in the training data, as well as start-of-string and end-of-string 
characters and a padding token. Except where otherwise noted, the architecture 
of the language models consisted of a three-layer GRU with a hidden layer of 512 
dimensions, an embedding layer of 128 dimensions, and no dropout layers. Models 
were trained using the Adam optimizer with β1 = 0.9 and β2 = 0.999, with a batch 
size of 128 (except where otherwise noted) and a learning rate of 0.001, using 
teacher forcing. Ten percent of the molecules in the training set were reserved 
as a validation set and used to perform early stopping with a patience of 50,000 
minibatches. After completion of model training, a total of 500,000 strings were 
sampled from each trained model. All of the code used to train CLMs is available 
from GitHub at http://github.com/skinnider/low-data-generative-models.

To evaluate the impact of the model architecture itself on model quality in 
the low-data regime, we systematically varied six model hyperparameters. These 
hyperparameters included the sizes of both the embedding and hidden layers, as 
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well as the total number of hidden layers. We also compared different architectures 
of RNNs altogether, including GRUs, LSTMs and ‘vanilla’ RNNs with two different 
activation functions (tanh and ReLU). In addition, we experimented with adding 
varying amounts of dropout between each layer. Finally, to gauge whether the 
manner by which the models were trained could also affect performance, we varied 
the size of the minibatches used to train the networks64. To explore this larger 
parameter space, we limited our analysis to two of the four chemical databases, 
ZINC and ChEMBL, and analysed only five replicates per hyperparameter 
combination instead of 10.

Evaluating model performance. To quantify the performance of the trained 
models, we implemented Python source code to calculate a suite of 23 metrics 
that have previously been proposed for the evaluation of generative models of 
molecules. These metrics were as follows:
•	 The proportion of valid molecules generated by the model, where ‘valid’ mol-

ecules are those that can be parsed by the RDKit (‘% valid’).
•	 The proportion of novel molecules (that is, molecules not found in the train-

ing set) generated by the model (‘% novel’).
•	 The proportion of unique molecules generated by the model (‘% unique’).
•	 The internal diversity35, defined as the mean Tc between all pairs of molecules 

generated by the model. Extended connectivity fingerprints61 with a diameter 
of 3 and a length of 1,024 bits were used as input to the calculation of Tc. 
Because calculating the entire matrix of Tanimoto coefficients is prohibitive 
for very large numbers of molecules, a random sample of 10,000 pairs of 
molecules was analysed.

•	 The external diversity35, defined as the mean Tc between all pairs comprising 
one molecule generated by the model and one molecule from the training set. 
Again, a random sample of 10,000 pairs of molecules was analysed rather than 
computing the entire matrix of Tanimoto coefficients.

•	 The Fréchet ChemNet distance36 between the training and generated mol-
ecules (‘FCD’). The PyTorch implementation available from http://github.com/
insilicomedicine/fcd_torch was used to calculate the FCD.

•	 The Jensen–Shannon distances between the distributions of 17 structural or 
physicochemical properties, comparing molecules generated by the CLM to 
the molecules comprising the training dataset. These properties, and their 
abbreviations used in the figures, were as follows:

•	 The number of aliphatic rings in each molecule (‘No. of aliphatic rings’)
•	 The number of aromatic rings in each molecule (‘No. of aromatic rings’)
•	 The total number of rings in each molecule (‘No. of rings’)
•	 The proportion of rotatable bonds in each molecule (‘percent rotatable bonds’)
•	 The proportion of carbon atoms in each molecule that are sp3 hybridized (‘Per-

cent sp3 carbons’)
•	 The proportion of atoms in each molecule that were stereocentres (‘Percent 

stereocentres’)
•	 The total proportions of each heavy atom across all molecules in the dataset 

(‘atoms’)
•	 The topological complexity65 of each molecule (‘Bertz TC’)
•	 The number of hydrogen acceptors in each molecule (‘No. of hydrogen 

acceptors’)
•	 The number of hydrogen donors in each molecule (‘No. of hydrogen donors’)
•	 The calculated partition coefficient66 of each molecule (‘log P’)
•	 The frequencies of Murcko scaffolds67 of all molecules in the dataset (‘Murcko 

scaffolds’)
•	 The molecular weight of each molecule (‘MW’)
•	 The natural product-likeness score68 for each molecule (‘NP score’)
•	 The quantitative estimate of drug-likeness (QED) score69 for each molecule 

(‘QED’)
•	 The synthetic accessibility (SA) score70 (‘SA score’)
•	 The topological polar surface area71 of each molecule.

In addition to the Jensen–Shannon distance, we also benchmarked two other 
measures of differences between property distributions, the Wasserstein distance 
and Kullback–Leibler divergence, but found JSD was most strongly correlated to 
the experimental ground truth (Supplementary Fig. 4).

Code used to compute all 23 metrics is available from GitHub at http://github.
com/skinnider/low-data-generative-models.

Despite the large number of metrics that have been proposed for the evaluation 
of generative models of molecules, there is little consensus on which should be 
used to gauge model quality. We initially evaluated the utility of these metrics 
themselves by correlating the values of each of the 23 metrics to the size of the 
training dataset, using the Spearman rank correlation to allow for nonlinear 
relationships. We reasoned that, because increasing the size of the training dataset 
from 1,000 to 500,000 molecules would be expected a priori to have a dramatic 
effect on the performance of a generative model, this analysis could allow us to 
benchmark the metrics themselves that have been proposed for model evaluation. 
Five metrics consistently achieved a Spearman correlation of ≥0.80 to the size 
of the training dataset in four different chemical databases (percent valid, FCD, 
percent stereocentres, Murcko and NP score). To combine information from 
all five top-performing metrics, while accounting for the covariance between 

metrics, we performed PCA on the centred and scaled matrix using the R function 
‘princomp’. The loadings of each model on the first principal component, PC1, 
were used for model evaluation. To ensure that these scores accurately captured 
model performance, we also inspected and visualized the proportion of valid 
molecules generated by each model. Pairwise comparisons of models trained 
with different input data or different hyperparameters were performed using a 
two-tailed t-test. The complete set of outcomes calculated for all 8,447 CLMs 
analysed in this study is provided as Supplementary Data 1.

We also investigated the impact of the total number of molecules sampled from 
the trained model on our conclusions. Throughout the main text, we draw samples 
of 500,000 molecules from the trained generative models. We sought to draw 
relatively large samples, despite the increase in computational requirements, to 
ensure we obtained the most representative results. However, we also investigated 
whether similar results could be obtained from smaller samples. To this end, we 
downsampled the samples of 500,000 generated molecules to obtain samples of 
1,000, 5,000, 10,000, 50,000 or 100,000 molecules. We found most correlations 
were robust to the number of molecules sampled, but a subset of property 
distribution-matching metrics displayed instability with <100,000 molecules 
sampled, possibly because the sample size affects the number of values that some 
properties can take on (Supplementary Fig. 5a). The variance across models 
also decreased as the number of molecules sampled from the model increased 
(Supplementary Fig. 5b). These findings suggest that practitioners should draw as 
large a sample as possible during model evaluation.

Generative models of metabolomes. To train generative models of bacterial, 
fungal and plant metabolomes, we compiled databases of known metabolites 
from the following sources. Bacterial metabolites were assembled from the E. 
Coli Metabolome Database (ECMDB)72, the P. Aeruginosa Metabolome Database 
(PAMDB)73, StreptomeDB74, NPASS75 and BioCyc76. For the latter two databases, 
only molecules linked to a bacterial producing organism were retained. Plant 
metabolites were assembled from the Phenol-Explorer77, PhytoHub (http://
phytohub.eu/), NPASS and BioCyc databases (keeping only metabolites linked 
to a plant producing organism in the latter two cases). Fungal metabolites were 
obtained from the Yeast Metabolome Database (YMDB)78.

We then trained a total of 48 chemical generative models on the three 
metabolomes. In addition to the input metabolome, we varied the RNN model 
(comparing LSTM and GRU architectures), the representation (comparing 
SMILES, DeepSMILES and SELFIES) and performed varying degrees of 
non-canonical SMILES enumeration (with augmentation factors of 2×, 3×, 10×, 
20× or 30×). After inspecting the PC1 scores of all 48 models, as well as the 
values of individual metrics, we selected the three LSTM networks trained on 
non-canonical SMILES with the highest augmentation factor for further analysis. 
To visualize the global chemical space of the real and generated molecules, we 
computed a continuous, 512-dimensional representation of each molecule using 
the CDDD package47 (available from http://github.com/jrwnter/cddd). We then 
sampled a matching number of real and generated metabolites, and embedded real 
and generated molecules from all three metabolomes into two dimensions using 
UMAP79 (as implemented in the R package ‘uwot’), with the following parameters: 
n_neighbors = 50, alpha = 2 and beta = 1.

Visualization. Throughout the manuscript, boxplots show the median (horizontal 
line), interquartile range (hinges) and smallest and largest values no more than 
1.5 times the interquartile range (whiskers), and error bars show the standard 
deviation.

Data availability
Input datasets used to train chemical language models are available from Zenodo80. 
Calculated metrics for all 8,447 models discussed in this study are provided as 
Supplementary Data 1.

Code availability
Code used to train and evaluate chemical language models is available from 
GitHub at http://github.com/skinnider/low-data-generative-models81.
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Extended Data Fig. 1 | evaluating low-data generative models of purchasable chemical space. a, Schematic overview of the ‘% valid’, ‘% unique’, and 
‘% novel’ metrics. b, Values of the five top-performing metrics with the strongest correlations (ρ ≥ 0.82) to training dataset size for n = 110 generative 
models trained on varying numbers of molecules from the ZINC database. c, Values of five exemplary metrics with moderate to weak correlations (0.48 
≤ ρ ≤ 0.73) to training dataset size for n = 110 generative models trained on varying numbers of molecules from the ZINC database. d, Values of five 
exemplary metrics with little or no correlation (ρ ≤ 0.36) to training dataset size for n = 110 generative models trained on varying numbers of molecules 
from the ZINC database.
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Extended Data Fig. 2 | evaluating low-data generative models of divergent chemical spaces. a, Values of the five top-performing metrics with the 
strongest correlations (average rank correlation ≥ 0.80) to training dataset size for n = 440 generative models trained on varying numbers of molecules 
from the ChEMBL, COCONUT, GDB, or ZINC databases. Points and error bars show the mean and standard deviation, respectively, of ten independent 
replicates. b, Values of five exemplary metrics with moderate to weak correlations to training dataset size for n = 440 generative models trained on varying 
numbers of molecules from the ChEMBL, COCONUT, GDB, or ZINC databases. c, Values of five exemplary metrics with little or no correlation to training 
dataset size for n = 440 generative models trained on varying numbers of molecules from the ChEMBL, COCONUT, GDB, or ZINC databases. d, PC1 scores 
for n = 440 chemical language models trained on varying numbers of molecules sampled from the ChEMBL, COCONUT, GDB, or ZINC databases. Inset text 
shows the Spearman correlation. e, Factor loadings onto the first principal component in a PCA of n = 440 chemical language models trained on varying 
numbers of molecules sampled from the ChEMBL, COCONUT, GDB, or ZINC databases.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Robustness of principal component analysis for the evaluation of chemical generative models. a, PCA of top-performing metrics, 
top, and PC1 scores, bottom, for chemical language models trained on varying numbers of molecules sampled from the ChEMBL, COCONUT, GDB, and 
ZINC database, with PCA performed separately for each database. Bottom, inset text shows the Spearman correlation. b, PCA of top-performing metrics 
for chemical language models trained on varying numbers of molecules sampled from three of four databases, colored by the size of the training dataset, 
top, or the chemical database on which the generative models were trained, middle. Bottom, PC1 scores for models trained on the withheld database, 
projected onto the coordinate basis of the other three databases. Inset text shows the Spearman correlation.
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Extended Data Fig. 4 | Learning chemical language models from less than 1,000 examples. a, Proportion of valid SMILES generated by chemical language 
models trained on samples of between 200 and 1,000 molecules from one of four chemical databases. b, Fréchet ChemNet distance of chemical language 
models trained on samples of between 200 and 1,000 molecules from one of four chemical databases. c, PC1 scores of chemical language models trained 
on samples of between 200 and 1,000 molecules from one of four chemical databases.
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Extended Data Fig. 5 | training dataset size requirements in different chemical spaces. Mean difference in PC1 scores between chemical language 
models trained on varying numbers of molecules sampled from each pair of chemical structure databases. Dark squares indicate pairs without statistically 
significant differences (uncorrected p > 0.05, two-sided t-test).
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Extended Data Fig. 6 | Low-data generative models of diverse and homogeneous molecules from the CheMBL and ZiNC databases. a, PCA of 
top-performing metrics for molecules generated by chemical language models trained on varying numbers of more or less diverse molecules from the 
GDB, ChEMBL, and ZINC databases, colored by the size of the training dataset. b, As in a, but colored by the chemical database on which the generative 
models were trained. c, As in a, but colored by the diversity (minimum Tanimoto coefficient to a randomly selected ‘founder’ molecule). d-i, Performance 
of chemical language models trained on samples of molecules from the ChEMBL (d-f) and ZINC (g-i) databases with a minimum Tanimoto coefficient 
(Tc) to a randomly selected ‘founder’ molecule. d, Proportion of valid SMILES generated by chemical language models trained on varying numbers of 
more or less diverse molecules from the ChEMBL database. e, Fréchet ChemNet distances of chemical language models trained on varying numbers of 
more or less diverse molecules from the ChEMBL database. f, PC1 scores of chemical language models trained on varying numbers of more or less diverse 
molecules from the ChEMBL database. g, Proportion of valid SMILES generated by chemical language models trained on varying numbers of more or 
less diverse molecules from the ZINC database. h, Fréchet ChemNet distances of chemical language models trained on varying numbers of more or less 
diverse molecules from the ZINC database. i, PC1 scores of chemical language models trained on varying numbers of more or less diverse molecules from 
the ZINC database.
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Extended Data Fig. 7 | evaluating alternative molecular representations for low-data generative models in distinct chemical spaces. a, Proportion 
of valid SMILES generated by chemical language models trained on one of three string representations of molecules from the ChEMBL, COCONUT, 
and GDB databases. b, PCA of top-performing metrics for molecules generated by n = 1,320 chemical language models trained on one of three string 
representations of molecules from the ChEMBL, COCONUT, and GDB databases, colored by the size of the training dataset. c, As in b, but colored by the 
chemical database on which the generative models were trained. d, As in b, but colored by molecular representation. e, PC1 scores of chemical language 
models trained on one of three string representations of molecules from the ChEMBL, COCONUT, and GDB databases. f, Fréchet ChemNet distances 
of chemical language models trained on one of three string representations of molecules from the ChEMBL, COCONUT, and GDB databases. g, Mean 
difference in PC1 scores between chemical language models trained on varying numbers of molecules sampled from the ChEMBL, COCONUT, and GDB 
databases, represented either as DeepSMILES or SELFIES, y-axis, or SMILES, x-axis. Dark squares indicate pairs without statistically significant differences 
(uncorrected p > 0.05, two-sided t-test).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Data augmentation by non-canonical SMiLeS enumeration. a, Proportion of valid SMILES generated by chemical language models 
trained on molecules from the ChEMBL, COCONUT, and GDB databases after varying degrees of non-canonical SMILES enumeration. b, Data as in a and 
Fig. 3i, but showing the relationship between the size of the training dataset and the proportion of valid SMILES generated by models for each degree of 
non-canonical SMILES enumeration separately. c, PCA of top-performing metrics for molecules generated by n = 1,760 chemical language models trained 
on molecules from the ChEMBL, COCONUT, and GDB databases after varying degrees of non-canonical SMILES enumeration, colored by the size of the 
training dataset. d, As in c, but colored by the chemical database on which the generative models were trained. e, As in c, but colored by the amount of 
SMILES enumeration. f, PC1 scores of chemical language models trained on molecules from the ChEMBL, COCONUT, and GDB databases after varying 
degrees of non-canonical SMILES enumeration. g, Mean difference in PC1 scores between chemical language models trained on molecules from the 
ChEMBL, COCONUT, and GDB databases represented as canonical SMILES, x-axis, or non-canonical SMILES after varying degrees of data augmentation, 
y-axis. Dark squares indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided t-test).
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Extended Data Fig. 9 | hyperparameter tuning in the CheMBL database. a, PCA of top-performing metrics for molecules generated by n = 1,210 chemical 
language models, trained on varying numbers of molecules from the ChEMBL database with varying model hyperparameters, colored by the size of 
the training dataset. b, Mean PC1 scores of chemical language models as a function of the total number of neurons in the model. Solid lines show local 
polynomial regression. c, Mean PC1 scores for molecules trained on the ChEMBL database, as a function of both the number of molecules in the training 
dataset, x-axis, and varying hyperparameters, y-axis. The mean of five independent replicates is shown. d, Proportion of n = 110 chemical language models 
with varying hyperparameters, trained on the number of molecules shown on the y-axis, that outperformed a model without hyperparameter tuning 
trained on the number of molecules shown on the x-axis.
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Extended Data Fig. 10 | Optimizing generative models of bacterial, fungal, and plant metabolomes. a, PCA of top-performing metrics for molecules 
generated by n = 48 chemical language models, trained on bacterial, fungal, or plant metabolomes with varying inputs and hyperparameters, colored 
by the target metabolome. b, As in a, but colored by the molecular representation and data augmentation strategy. c, As in a, but colored by the RNN 
architecture. d, Proportion of valid molecules produced by generative models of metabolomes trained with different molecular representations (SMILES, 
DeepSMILES, or SELFIES), data augmentation strategies (non-canonical SMILES enumeration with an augmentation factor of between 2x and 30x), and 
RNN architectures (GRU or LSTM). e, As in d, but showing the Fréchet ChemNet distance between generated and real metabolites. f, As in d, but showing 
the Jensen-Shannon distance of the proportion of stereocenters between generated and real metabolites.
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